Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
S. Kapoor, editor-in-chief (Ed.)In this paper, a novel hybrid wire arc additive manufacturing (WAAM) and ultrasonic nanocrystal surface modification (UNSM) on porosity manipulation and surface properties of aluminum 5356 alloys was studied. The goal is to improve the quality of the WAAM-built part by eliminating bigger pores and reducing its size, reducing surface roughness, and increasing surface hardness. The as-built WAAM and WAAM-UNSM-treated samples were quantitatively studied for porosity using an X-ray micro-computed tomography (μ-CT). The surface roughness was measured on the surface profile of the same samples before and after UNSM treatment. Followed by the Vickers micro-hardness tests to evaluate the hardness modified by the influence of the UNSM treatment. It was found that the bigger pores in the as-built WAAM samples were eliminated and the medium-sized pores were shrunk to almost half the size after the UNSM treatment. Further, the UNSM treatment showed a significant improvement in both surface roughness and hardness on the WAAM Al5356 samples. This experimental work demonstrates the critical advantages of hybrid WAAM-UNSM in improving the qualities of the WAAM processed parts.more » « less
-
M. Wiercigroch, editof-in-chief (Ed.)Additive manufacturing (AM) is known to generate large magnitudes of residual stresses (RS) within builds due to steep and localized thermal gradients. In the current state of commercial AM technology, manufacturers generally perform heat treatments in effort to reduce the generated RS and its detrimental effects on part distortion and in-service failure. Computational models that effectively simulate the deposition process can provide valuable insights to improve RS distributions. Accordingly, it is common to employ Computational fluid dynamics (CFD) models or finite element (FE) models. While CFD can predict geometric and thermal fluid behavior, it cannot predict the structural response (e.g., stress–strain) behavior. On the other hand, an FE model can predict mechanical behavior, but it lacks the ability to predict geometric and fluid behavior. Thus, an effectively integrated thermofluidic–thermomechanical modeling framework that exploits the benefits of both techniques while avoiding their respective limitations can offer valuable predictive capability for AM processes. In contrast to previously published efforts, the work herein describes a one-way coupled CFDFEA framework that abandons major simplifying assumptions, such as geometric steady-state conditions, the absence of material plasticity, and the lack of detailed RS evolution/accumulation during deposition, as well as insufficient validation of results. The presented framework is demonstrated for a directed energy deposition (DED) process, and experiments are performed to validate the predicted geometry and RS profile. Both single- and double-layer stainless steel 316L builds are considered. Geometric data is acquired via 3D optical surface scans and X-ray micro-computed tomography, and residual stress is measured using neutron diffraction (ND). Comparisons between the simulations and measurements reveal that the described CFD-FEA framework is effective in capturing the coupled thermomechanical and thermofluidic behaviors of the DED process. The methodology presented is extensible to other metal AM processes, including power bed fusion and wire-feed-based AM.more » « less
An official website of the United States government
